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Elastic properties of apatites 

R. S. G ILMORE* ,  J. L. KATZ 
Center for Biomedical Engineering, Rensselaer Polytechnic Institute, Troy 
NY 12181, USA 

One of the prime motives for studying the elastic properties of the apatites stems from 
the occurrence of hydroxyapatite, OHAp, in calcified tissue. In this paper the isotropic 
elastic contents of crystalline apatite solids are determined from measurements of elastic 
wave velocities through powders under pressure. Once obtained, these elastic constants 
are used to model the elastic behaviour of a two-phase composite material having one 
phase more rigid than the other by a factor of 2.4. The results are then used in a general 
discussion of the probable order of magnitude of the elastic constants of the organic 
non-crystalline phase in bones and teeth, under the assumption of a two-phase system. 

1. Introduction 
1.1. Historical review 
Reviews of the stress-strain behaviour in bone 
[1-3]  and teeth [4] are available. Much of the 
work has been devoted to studying the effect of 
various factors such as microanatomy, inorganic 
content and age, on elastic properties. Most of 
the experiments have used standard mechanical 
testing procedures. However, a number of investi- 
gators have utilized ultrasonic techniques to study 
the elastic properties of hard tissue; Lees [5] 
summarizes and discusses these ultrasonic results. 

Currey [6], and Bonfield and Li [7], respect- 
ively, in early papers summarized the state of 
knowledge concerning the elastic and inelastic 
properties of hard tissue. They both used an 
equivalent strain calculation, such as was first 
proposed by Voigt [8], in their discussion. 

The present work shows why the equivalent 
strain model can be used only to indicate a lower 
or upper bound of the quantity being calculated 
depending, respectively, on whether the elastic 
moduli of one of the component phases is being 
calculated or those of the entire composite. 

1.2. Introduction to experiment 
High pressure ultrasonic studies of ClAp, FAp and 
OHAp give precise information on their elastic 
constants and equations of state. Ultrasonic 

studies on single crystals compressed by hydro- 
static pressure provide the most reliable and the 
greatest volume of information about the elastic 
properties of a crystal. These measurements for 
hexagonal and monoclinic crystals, however, 
require several relatively pure crystals, at least 1 cm 
on a side, cut to several orientations. Of the three 
apatites, only FAp is readily available in large 
single crystals, and since a comparative study of 
the three is desired, single-crystal studies are 
abandoned for the present. 

The use of quasi-isotropic polycrystalline 
ceramics to study both the elastic constants of 
materials and their pressure and temperature 
derivatives has received much recent attention 
[9-11 ]. However, ClAp has been the only material 
of the three that has shown any tendency to sinter 
into a non-porous solid material. OHAp may 
decompose before suitable sintering temperatures 
are reached and FAp yields only a coarse and 
porous mass even for temperatures in the vicinity 
of 1000 ~ C. Thus, studies of ceramics were also 
temporarily abandoned because of fabrication 
problems. 

A third procedure was available. Several years 
of work in the geology department at Rensselaer 
Polytechnic Institute have been directed to the 
construction and calibration of a uniaxial high- 
pressure ultrasonic apparatus, Figs I and 2, with 
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a pressure capability of 101~ -2 [12, 13]. 
Procedures have also been developed to make 
measurements on powdered materials. There are 
many minerals abundant in the earth's crust 
having sufficiently low symmetry that single-crystal 
measurements would be very tedious and for 
which sintering techniques are not yet developed. 
The following is a description of the results of 
measurements on powdered specimens of ClAp, 
FAp and OHAp to 5 x 109 N m -2 in that apparatus. 

2. Theory of measurement 
2.1. Descript ion 
The apparatus and the calculation scheme used 
here are described elsewhere [13]. Briefly, the 
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Figure 2 High pressure cell. 
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measurement consists of pelleting the powdered 
specimen in a small cylindrical die and then 
placing it in the high pressure apparatus for the 
ultrasonic velocity measurements. 

Following interference techniques first devel- 
oped by McSkimin [14], a radio frequency (r.f.) 
pulse is applied tO either of the ultrasonic trans- 
ducers mounted in the centre of the back face of 
the tungsten carbide pistons, see Figs 1 and 2. 
The resulting ultrasonic pulse is internally reflected 
within the pistons and specimen. Each transducer 
acts as both transmitter and receiver. When the 
ultrasonic pulse duration is greater than twice 
the transit time for the wave to pass through the 
specimen, interference occurs between the reflec- 
tions from the near and far piston-specimen 
interfaces. In this condition the carrier frequency 
may be adjusted until successive reflections 
from the far piston-specimen boundary are all rr 
radians out of phase with those from the near 
boundary. The conditions governing the resulting 
interference of the elastic waves permit the ultra- 
sonic velocities to be calculated when the specimen 
thickness and the carrier frequency of the r.f. 
pulses are known. 

2.2. In ter ferometry  
For two waves of the same frequency, destructive 
interference occurs when they are 7r radians out 
of phase. Thus, for a specimen of thickness l, the 
condition for destructive interference as evident 
from the phase relationship between the reflec- 
tions from the two anvil specimen interfaces is 

0X X 
2 l +  - (2n + 1); n = 1 , 2 , 3  . . . . .  

2rr 2 
(1) 

where X is the wavelength and O the total phase 
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shift in radians at the interfaces. Thus, minima 
in reflected energy occur where 

X 3X 5X 
l -  2 '  2 ' 2~ . . . . .  etc. 

The velocity may now be written as 

V = FX = F o ( 2 l ) , F l ( l l ) , F 2 ( } l ) . . . ,  

(2) 

where Fn. l -- F n = Fo. Thus, measurements of the 
carrier frequency of the r.f. pulse at a minimum 
in reflected energy, and of the specimen thickness 
give the velocity directly. 

2.3. Pressure--veloci ty  re la t ionship 
Several procedures have been developed to evaluate 
the change in specimen thickness as a function of 
pressure. The first, and most straightforward, 
simply uses linear variable differential transformers 
(LVDT) to measure the piston displacement 
as pressure is increased. The piston deformation is 
then subtracted to arrive at the change in thickness 
of the specimen. A second procedure calculates 
the specimen deformation from the ultrasonic 
measurements by a numerical iteration using a 
high speed computer. Both procedures give the 
same results within experimental precision (-+ 5 %). 

The pressure corresponding to a given applied 
force on the tungsten carbide pistons is determined 
by oberving changes in electrical resistance 
accompanying volume transitions in Bi and TI 
that occur at known pressures. Pressures between 
these calibration points are obtained by inter- 
polation. With t h e  application of pressure, the 
elastic properties, thickness, and density of the 
specimen all change. Thus, in order to determine 
the elastic constants, the change in specimen 
density, thickness, and elastic velocity must be 
taken into account simultaneously. 

For a homogeneous isotropic medium, the 
two solutions to the elastic wave equations corre- 
spond to longitudinal and transverse waves [15] 
propagating with velocities of 

1 

G = p 

and 
1. 

respectively, where Ks, Gs and p are the adiabatic 
bulk modulus, adiabatic shear modulus and den- 
sity, respectively. Thus, the elastic constants may 

be written as 

Ks = (Cz 2 ---~ Cr 2) (5) 

and 

Gs = pCr  2. (6) 

If the bulk modulus, measured during the 
adiabatic Passage of  an elastic wave, is used to 
calculate the change in specimen density due to an 
isothermal change in pressure, the standard thermo- 
dynamic correction must be applied. Here, 

d e  (7) 
K r = KJ(1  + ot2TK,/pG) = p -~p r '  

where Kr,  a, T, p and C v are the isothermal bulk 
modulus, thermal expansion, temperature, density, 
and specific heat at constant pressure, respectively. 
The combination of Equations 5 and 7 gives 

d o =  + C? " (8) 

Thus, where the velocities are known a small 
change in density may be calculated from a small 
change in pressure. The summation of a large 
number of small changes is required to correctly 
calculate the density due to a large increase in 
pressure. Although for most materials, including 
the apatites, the adiabatic-isothermal correction 
is only a few per cent, it involves both a and Cp, 
so a brief discussion of  their pressure dependence 
is in order. An assumption often used in high 
pressure research is that 7C,,/V is independent of 
pressure [16], where 7, Cv, and V are the 
Gruneisen ratio, specific heat at constant volume, 
and specific volume, respectively. Thus, with Kro~ 

= 3'Cv/V [17], the pressure dependence of a may 
be shown to vary as the inverse of the pressure 
dependence of the isothermal bulk modulus. 
Additional calculations [13] show that C v varies 
only 10% in 1011Nm -2 and thus may be taken 
to be nearly independent of pressure. 

2.4. Effects of porosity 
The use of compacted powder as the specimen 
introduces the difficulty of porosity at lower 
pressures. The initial dramatic increase in the 
elastic velocitites shown in Fig. 3 is primarily 
due to compression of the pores. Velocity- 
pressure curves in non-porous solids show little 
or no curvature [9, 11, 18], while studies in rocks 
and similar porous structures show considerable 
curvature at low pressure [16]. In this work, the 
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Figure 3 Longitudinal and transverse velocities in OHAp, 
FAp, and ClAp to 5 X 109Nm -z. 

pressure where the porosity becomes zero has been 
interpreted as the pressure at which the velocity- 
pressure relationship becomes linear. The porosity 
returns as pressure is released, however, because 
the temperature (298K) is too low for self- 
diffusion and sintering to occur. The velocity 
values that wouldoccur in a sinteredpolycrystalline 
solid of ClAp, FAp, and OHAp near zero pressure 
are predicted by extrapolating the linear high 
pressure relationship back to zero pressure. 

Several reviews [19-21] show that both the 
elastic velocities and moduli of all non-porous 
materials measured to date may be approximated 
closely by linear functions in pressure. Present 
exceptions to this occur only in the case of first 
order polymorphic transitions during which there 
are discontinuous changes in the density, velocity, 
and moduli relationships, when pressure is the 
independent variable. By use of the above infor- 
mation, elastic-moduli-pressure relationships may 
be developed by extrapolating the linear portion 
back to zero pressure to give 
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M = Mo + rP, (9) 

where M, 21,/o, M'  and P are the elastic modulus, 
its value at zero pressure, its pressure derivative 
and the pressure at which it is evaluated, respect- 
ively. 

The specimen density after the pores are closed 
is calculated from the zero pressure crystalline 
density and the extrapolated velocity values, 
Fig. 3, using Equation 8. In this work the elastic 
behaviour of the powder at pressures where it 
is porous has been neglected. If this informa- 
tion is desired, the zero-pressure density of the 
porous pellet must be determined by mercury 
displacement techniques. Once this is known, the 
change in density of porous mediums may be 
calculated from the measured velocities, again 
with Equation 8. 

2.5. OHAp-NaCI composite 
Since hard tissue is a composite, a natural extension 
of this work is the measurement of the behaviour 
of OHAp in a two.phase composite. Sodium 
chloride was chosen as the second member because 
of its ability to sinter at room temperature and its 
low elastic moduli compared with OHAp. The 
latter feature is important because the non-crystal- 
line phases in hard tissue have considerably lower 
elastic moduli than does crystalline apatite. 

The elastic properties of a composite, composed 
of two materials whose elastic moduli are known, 
is considered in the most general way by Hill [22]. 
Simmons and Chung [23] have applied Hill's 
work to determine the elastic constants of an 
unknown crystalline material by imbedding it in a 
matrix with known elastic properties and then 
determining the unknown by measuring the elastic 
properties of the composite. 

The application of a rigorous elasticity calcu- 
lation based on a two-phase composite, while 
applicable to the apatite-NaC1 mixtures, is not 
necessarily applicable to hard tissue. Current 
theories regarding the existence of crystalline, 
amorphous and organic components and their 
fractional concentrations should receive primary 
attention in the development of a model for the 
elastic behaviour for bone and teeth. In addition, 
the elastic moduli of materials with low shear 
strengths, such as long-chain organic molectdar 
solids, increase with increasing strain rate. The 
values for elastic moduli calculated from wave 
velocities are at maximum strain rates and hence 
are maximum values. These may be quite different 



from those obtained in standard compression and 10.C 
tension tests or from those determined when the 
elastic response of a skeleton is stressed by the 
actions of a living organism. 

An approximate treatment that assumes strain 
throughout the mixture is uniform [8] gives 8 (  

Kv = CIK1 + C2Ks (10) 

and 

Vv = C1 G1 -~- Cs G2, (11) A tO 

~- 6 . (  
where Kv, K1, K2, Gv, GI,  G2, Cz and C2 are the = 
bulk moduli of the composite and two phases, 
the shear moduli of the composite and two phases 
and the fractional volume concentrations of the .a 
two phases, respectively. The dual assumption, due 

4.( to Reuss [24], is that stress is uniform. This gives 

1 Ca 6"2 
- I ( 12 )  

KR K1 Ks 
and 

1 _ C 1  +6"2 , 2.C 
C~ G, G2 (13) 

where KR and GR are the bulk and shear moduli 
of the composite, respectively. Hill [22] has shown 
by elementary considerations of the strain energy 
that the actual bulk modulus of the composite 
falls between the Voigt and the Reuss approxi- 
mations as upper and lower bounds. However, 
these bounds become quite large, see Fig. 4, when 
the elastic modulus of one phase differs from the 
other by a factor greater than 2. 

The solutions of Equations 10 to 13 in terms of 
one of the phases now give a method for placing 
upper and lower bounds on the other phase. 
Thus, Equations 10 to 13 give 

Ka - Kv -- C2K2 (14) 
C1 

Gv -- Cs G2 
G1 - C1 ' (15) 

C1KRK2 
K1 - 

K2 - -  C2KR (16) 

and 

C1G2GR 
Gt - , (17) 

G 2 - -  C2G R 

respectively. It will be noted that, in the use of the 
measured composite moduli with the known 

0 
0 50 I00 
K, K z 

VOLUME CONCENTRATION 

Figure 4 Voigt-Reuss limits for the bulk modulus of two- 
phase composites where 8K2 = 10K 1, K~ = 2K 1 and 
K 2 = 10K 1. 

moduli of one phase to calculate values for the 
other, the Voigt equations give a lower bound value 
and the Reuss equations an upper bound. 

The elastic moduli of  OHAp and the bulk 
measurements of hard tissue (dentin and enamel) 
now permit us to place bounds on the elastic 
properties of the material present other than 
crystalline apatite. It should be emphasized, 
however, that the calculations outlined above 
implicity assume the apatite is randomly oriented 
and that only one other phase is present. Thus, the 
organic and possible amorphous phase are treated 
as one. It should also be emphasized that the large 
contrast in the moduli of the crystalline and non- 
crystalline phases in hard tissue make calculations 
very imprecise. 
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T A B L E I Pressure dependence of sonic velocities 

Material Density, p (g crn -3) Longitudinal velocity, Transverse velocity, 
C l (kin see -1) C r (kin see - l)  

OHAp 3.17 6.85 + 0 .16P*  3.75 + 0.056P 
FAp 3.18 6.95 + 0.12P 3.82 + 0.030P 
ClAp 3.12 6.10 + 0.23P 3.45 + 0.060P 
Dentin [25 ] 2.2 3.6 1.9 
Enamel [25] 2.9 5.4 3.2 
NaC1 2.16 4.62 + 0.18P 2.58 + 0.070P 

*P is in GN m -~. Overall precision is -+ 2%. 

3. Experimental procedure 
The experimental procedure consists of pelleting 
each specimen into a right circular cylinder 0.350 
cm thick and 0.635 cm in diameter, cycling it 
twice to a pressure of 5 x 109Nm -2 and taking 
ultrasonic data on the third cycle. The data, taken 
at 2 and 5 x 10SNm -2 intervals for both increas- 
ing and decreasing pressure, consist of measure- 
ments of the force applied to the high pressure 
cell, Fig. 1, by a hydraulic press, of several fre- 
quencies at successive minima, and of the piston 
displacement. 

The high pressure cycling serves the dual 
purpose of compacting the specimen and providing 
a reproducible pressure. The known polymorphic 
transitions used to provide the force-pressure 
calibration usually do not occur at reproducible 
values of applied force until after the second 
or third cycle. 

4. Results 
Ultrasonic data were taken on three specimens 
of FAp, OHAp, and ClAp, respectively. Both the 
FAp and OHAp specimens were pelleted from 
natural minerals not less than 90 % pure. The ClAp 
specimens were pelleted from synthetic materials, 
prepared in the Materials Engineering Department 
at Rensselaer Polytechnic Institute. The natural 
apatite samples used in these measurements were 
selected so that impurities were small. The minerals 
that typically occur in natural apatite have elastic 
properties closely approximating those of the host 
material. Estimates made using composite calcu- 
lations described by Equations 10 to 13 indicate 
that errors due to impurities affect the elastic 
constants measured here by less than 2%. 

However, one effect that could be significant 
is the tendency of impurities to suppress poly- 
morphic transitions in their host.. The fact that, 
a velocity discontinuity was found i n  the pure 
ClAp but not in the natural materials, could 
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be due either to a lack of discontinuities in these 
materials or to their suppression by the impurities. 

The ultrasonic velocities for FAp, OHAp, and 
ClAp are shown in Fig. 3 and Table I. The relation- 
ships shown in Table I result from expressing 
the linear portion of  the velocity data as a straight- 
line equation. Extrapolation of this straight line 
back to atmospheric pressure gives the approximate 
velocity in a sintered solid with no porosity. 

The elastic constants shown in Figs 5, 6 and 7 
and Table II are calculated directly from the 
velocity data. 

The velocity discontinuity in the ClAp data 
suggests that a polymorphic transition occurs in 
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Figure 5 The elastic constants of OHAp to 5 X 109 N m -2. 
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Figure 6 The elastic constants of FAp to 5 • 109 Nm -~. 

ClAp between 26 and 30 x 108Nm -2. Although 

a change in slope has been found in the p res su re -  
volume curve, the volume measurements do not  
have sufficient precision to determine the 
magnitude o f  volume change associated with the 
phase transition. Speculation based on the amount  

of  force required to drive the volume change to 
complet ion indicates that  the volume changes a 
few per cent. 

The elastic behaviour o f  the 5 0 - 5 0  and 2 0 - 8 0  
NaC1-OHAp composites is summarized in Figs 8 
to 11. Fig. 12 shows that  the bulk values follow 
the Reuss approximation more closely than they 
d o  the Voigt approximation.  
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Figure 7 The elastic constants of ClAp to 5 X 109 N m -2. 

Ultrasonic velocities performed on slices o f  bov- 
ine dentin and enamel [24] may now be used to give 

an indication of  the sonic moduli  of  collagen, see 
Fig. 13. The Reuss approximation is used in the 
calculation because the non-linearity of  the elastic 
moduli ,  as a function of  the volume concentrat ion 
of  OHAp, suggests this would give the most  nearly 
precise results. The resultant values for the bulk and 
shear moduli are 0.82 x 101~ -2 and 0.55 x 101~ 

N m -2, respectively. It should be remembered that  
these are for the combination o f  the amorphous 
and organic phases as one phase and that  their 
physical significance is that  of  an upper bound.  

T A B L E I I Zero pressure values and pressure derivatives of the ultrasonic moduli of elasticity* 

Material K s K s G s G s E s 
(X 10 ~~ Nm -2) (• 10 ~~ Nm -~) (• 10 x~ Nm -2) 

OHAp 8.90 6.9 4.45 1.6 11.4 
FAp 9.40 5.8 4.64 1.3 12.0 
ClAp (0 to 26 • 108 Nm -2) 6.85 8.5 3.71 2.2 9.43 
Dentin [25] 1.8 - 0.80 - 2.1 
Enamel [25] 4.6 - 3.0 - 7.4 
NaC1 2.60 4.7 1.45 1.0 3.67 

*Overall accuracy is -+ 1% for both the bulk modulus, Ks, and the shear modulus, G s. The pressure derivatives, K s and 
G s are accurate to 8%. 
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Figure 8 The pressure dependence of the shear modulus 
of NaC1-OHAp composites. 

5. Discussion 
The modulus most often measured on biological 
materials is Young's modulus. In the usual experi- 
ment, oriented sections of bone or teeth are loaded 
in tension or compression, and the axial force and 
resultant strain are measured. The dependence of 
the elastic moduti of  composite materials, where 
the phases are markedly different, on strain rate 
and strain amplitude is too extensive to be 
discussed in detail here. It is sufficient to say that 
the elastic moduli increase with strain rate. Thus, 
since ultrasonic velocities are the maximum rates 
for the propagation of strain and stress though 
materials, they should give the maximum elastic 
moduli for those materials. 

Variations of  crystallinity and structure in 
specimens prepared from bone and teeth give 
further sources of scatter. Fig. 13, shows that 
a 5 % increase in the crystallinity of enamel 
could result in a 20% increase in the bulk and 
shear moduli. 

The volume concentrations of  OHAp, 90 % 
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Figure 9 The pressure dependence of the bulk modulus 
of NaC1-OHAp composites. 

and 60 % for enamel and dentin, respectively, 
were chosen as generally representative, and it 
should not be inferred that they were measured. 
Investigators who prefer different representative 
values for bovine dentin and enamel based on 
their volume concentration measurements should 
feel free to reinterpret the ultrasonic data. 

Fig. 13 also shows that attempts to fit the 
dentin, enamel and OHAp data to a straight line 
would result in negative values for the second 
phase. Thus, the linear (Voigt) approximation 
would appear to be less applicable than the 
Reuss calculation used here. Young's modulus 
may be calculated from the bulk and shear 
moduli. Thus, using K = 0 . 8 x  10t~ -2 and 
G = 0.5 x 10 ~~ N m -2, one determines from 

9KG 
- 3K + O ' (18) 

that the value for collagen from these calculations 
would be 1.2 x 101~ -2. Using this value for 
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collagen and 11.4 x 101~ -2 for OHAp, Reuss' 
calculation gives 2 to 3 x 101~ -2 for Young's 
modulus of a material 40% to 50% crystalline, or 
one close to bone in composition. 

It should be emphasized that these calculations 
are based on sonic moduli and the Reuss approxi- 
mations, and therefore represent an upper bound 
for collagen; values obtained with slower strain 
rates and/or with other approximations may fall 
well below these values. The Young's modulus 
for collagen calculated above is an order of magni- 
tude greater than that reported by Currey [6], 
0.12 x 10X~ -2. However, the differences 
between ultrasonic and mechanical experiments 
make their comparison impossible without 
additional measurements at intermediate rates of 
strain. 

Comparisons between this work and that of 
Yoon and Newnham [26] on FAp show the bulk 
and shear moduli measured here to be approxi- 
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Figurell Dependence of the bulk modulus of NaC1- 
OttAp composites on volume concentration. 

mately 10% larger than their values. This could be 
due to the preferred orientation of the particles in 
our samples due to uniaxial compression. Since all 
three apatites are similar in crystal structure, 
roughly identical compression textures should 
be formed in each so comparisons between the 
materials are unafffected by preferred orientation. 

6 .  S u m m a r y  

The study of stress and strain in bones and teeth 
has been of major interest to many investigators 
for the past 120 years. Today there is an extensive 
bibliography of elastic moduli studies on hard 
tissue. The largest portion of the work has been 
done using tension and compression machines at 
reasonably slow strain rates. However, there has 
been little writtten that recognizes the effect of 
strain rate and sample size on the resulting elastic 
moduli. There also have been few attempts to 
evaluate the elastic behaviour of the separate 
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Figure 12 A comparison between the dependence of the 
bulk modulus of NaC1-OHAp. 

components of hard tissue in order to develop 
a model to predict their composite properties. 

This work described a series of measurements 
to evaluate the polycrystalline, quasi-isotropic 
elastic properties of OHAp, ClAp, and FAp. The 
data were taken by compacting powders to very 
high pressures ( 5 x l 0 9 N m  -2) and observing 
the velocity-pressure relationships after porosity 
had been removed. The velocities at zero pressure 
were then evaluated by backward extrapolation 
Of the high pressure data. 

Since hard tissue is composed of physically 
intermingled compounds, an attempt has been 
made to show how the compositional variations 
in mixtures of NaC1 and OHAp affect elastic 
properties. NaC1 was chosen as the other com- 
ponent because of its ability to sinter into a solid 
under high pressure at room temperature, its low 
elastic moduli compared with OHAp, and finally, 
because it is a well known material and can serve 
as a standard. 

Velocity measurements on natural materials 
prepared from slices of dentin, enamel and corn- 
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function of crystalline content. The extrapolation to 
evaluate the non-crystalline phase is based on the Reuss 

. equation. 

pacted pellets of deorganified bone give compari- 
sons between these, the pure apatite powders, and 
the OHAp-NaC1 composites. 

In general, the compressional velocities at zero 
pressure in all of  the natural and synthetic apatites 
measured fall between 6.5 and 7.0kmsec -1, with 
ClAp being consistently lowest. The shear velocities 
fall between 3.5 and 4.0 km sec -1 , again with ClAp 
being the lowest. The shear velocities in bovine 
dentin and enamel are 1.9 and 3.2kmsec -1, 
respectively; the compressional velocities are 3.6 
and 5.4 km sec -1 . The velocities in compacted, 
deorganified bone powders prepared from various 
species of fish are in the neighbourhood of 5.0 and 
2.7 km sec -I , respectively, for the compressional 
and shear velocities [27]. 

Additional equation-of-state information such 
as the elastic c6nstants, Debye temperature, and 
pressure-volume behaviour have been obtained 
directly from the high pressure ultrasonic measure- 
ments. 

A number of additional measurements on 
thermal, mechanical and elastic properties of 



apatites and hard tissues have been reported in the 
literature. These measurements have been summar- 
ized, critically analysed and Used for comparison 
where pertinent. 
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